

НПФ Техэнергокомплекс

РАЗЪЕДИНИТЕЛИ СЕРИИ РВ, РВЗ, РВФ, РВФЗ ЗАЗЕМЛИТЕЛЬ ЗР С ПРИВОДОМ ПР-10 НА НАПРЯЖЕНИЕ 10 кВ

Руководство по эксплуатации СЭК.3414-002 РЭ

Содержание

Техническое описание

1.	НАЗНАЧЕНИЕ	3
2.	ТЕХНИЧЕСКИЕ ДАННЫЕ	
3.	УСТРОЙСТВО И РАБОТА	<i>6</i>
4.	МАРКИРОВАНИЕ	10
5.	ГАРАНТИИ ИЗГОТОВИТЕЛЯ	10
Рук	ководство по эксплуатации	
	УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ	
7.	ПОДГОТОВКА К РАБОТЕ	11
8.	ПРОВЕРКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ	15
9.	ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ	1 <i>6</i>
10	ΤΡΔΗΛΠΩΡΤИΡΩΒΔΗΜΕ Μ ΧΡΔΗΕΗΜΕ	16

Техническое описание

Предприятие-изготовитель постоянно работает над совершенствованием изделий с целью повышения его надежности и улучшения условии эксплуатации; при этом в конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем руководстве.

Настоящее руководство по эксплуатации относится к разъединителям трехполюсным серии PB, PB3, PBФ, PBФ3 с приводами ПР-10 и заземлителям 3P.

Не включайте разъединитель, не ознакомившись с руководством по эксплуатации!

1. НАЗНАЧЕНИЕ

- 1.1. Разъединитель трехполюсный электрический аппарат с видимым местом разъединения электрической цепи в воздухе, предназначенный (совместно с приводом):
 - для отключения и включения под напряжением участков электрической цепи высокого напряжения при отсутствии нагрузочного тока или для изменения схемы соединения;
 - для безопасного производства работ на отключенном участке;

Разъединители РВЗ, РВФЗ, заземлители ЗР с приводом ПР

- для включения и отключения зарядных токов воздушных и кабельных линий и тока холостого хода трансформаторов.
- 1.2. Заземлитель трехполюсный электрический аппарат, предназначенный для заземления отключенных участков.
- 1.3. Привод рычажный механизм, предназначенный для ручного включения и отключения разъединителей и заземлителей.
- 1.4. Разъединители и заземлители устанавливаются в сетях переменного тока частоты 50 Гц напряжением 6 и 10 кВ.
- 1.5. Разъединители, заземлители и приводы внутренней установки предназначены для работы на высоте над уровнем моря до 1000 м при температуре воздуха от -40°C до +40°C, в помещениях с естественной вентиляцией без искусственно регулируемых климатических условий. Помещение, в котором устанавливаются разъединители (заземлители) и приводы должно быть закрытым, взрыво- и пожаробезопасным, не содержащим агрессивных газов и паров в концентрациях, разрушающих изоляцию и защитные покрытия.

2.ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1. Значения номинальных параметров приведены в таблице 1.

Таблица 1

Параметр	Значение
Номинальное напряжение (соответствую-	
щее наибольшему рабочему напряжению),	10(12)
кВ	
Номинальный ток, А	630, 1000
Номинальный кратковременный выдержи-	
ваемый ток, амплитудное значение (ток	20
термической стойкости), кА	
Наибольший пик номинального кратковре-	
менного выдерживаемого тока, амплитудное	50
значение (ток электродинамической стойко-	50
сти), кА	
Номинальная частота, Гц	50

- 2.2. Ток холостого хода трансформаторов, зарядные токи воздушных и кабельных линий, токи нагрузки, которые допускается отключать и включать разъединителями, 1A при $\cos \varphi = 0.2$.
- 2.3. Тип, габаритные, установочные размеры и масса разъединителей и заземлителей даны в таблице 2.

Таблица 2

		_				олица 2	
Обозначение типоис-	Вариант распо-	Вариант распо- ложения про-	Габаритные размеры, мм, не более (см.			Масса, кг,	
полнения	ложения зазем-	ходных изоля-		ис.1,2,3,4		не более	
Полнения	ляющих ножей	торов	L	H	В	ue oouee	
PB 10/1000 У3		I вар. – без проходных изоляторов.	654	199	472	28	
РВ 10/630 У3	_			182	464	25	
РВЗ 10/1000 І УЗ	I вар. – зазем- ляющие ножи	I вар. – без проходных	704	197	622	30	
РВЗ 10/630 І УЗ	со стороны разъемных кон- тактов	изоляторов.	704	186	589	28	
PB3 10/1000 II У3	II вар. – зазем- ляющие ножи	I вар. – без проходных	704	197	622	30	
PB3 10/630 II У3	со стороны шарнирных контактов	изоляторов.	704	186	589	28	
РВЗ 10/1000 III УЗ	III вар. – зазем- ляющие ножи с	I вар. – без проходных	744	197	745	33	
РВЗ 10/630 III УЗ	двух сторон	изоляторов.	744	186	713	31	
РВФ 10/1000 II У3		II вар. – про- ходные изоля-		202	437	34	
РВФ 10/630 II У3	_	торы со сторо- ны шарнирных контактов.				32	
РВФ 10/1000 III У3		III вар. – про- ходные изоля- торы со сторо-			437	34	
РВФ 10/630 III У3	_	ны разъемных контактов.				32	
РВФ 10/1000 IV У3	_	IV вар. – про- ходные изоля-	722		406	39	
РВФ 10/630 IV У3		торы с двух сторон				37	
РВФЗ 10/1000 І-ІІ УЗ	I вар. – зазем- ляющие ножи со стороны	II вар. – про- ходные изоля- торы со сторо-		199	649	39	
РВФЗ 10/630 І-ІІ УЗ	разъемных кон- тактов	ны шарнирных контактов.				35	
РВФЗ 10/1000 ІІ-ІІ УЗ	II вар. – зазем- ляющие ножи со стороны	II вар. – про- ходные изоля- торы со сторо- ны шарнирных контактов.			649	39	
РВФЗ 10/630 ІІ-ІІ УЗ	шарнирных контактов					35	
3Р-10 УХЛ3	_	_	632	182	262	12	
3Р-10П УХЛЗ	_	-	740	220	312	18	
ПР-10-1-УХЛЗ	_	_				2,4	

Пример обозначения при заказе разъединителя на номинальный ток 630 A, с заземляющими ножами и проходными изоляторами со стороны шарнирных контактов: PBФ3-10/630 II-II У3

3. УСТРОЙСТВО И РАБОТА

3.1. Разъединители типа РВ(3) (рисунок 1) состоят из основания 1, опорных изоляторов 2 и токопровода. Основание служит для установки изоляторов и для крепления разъединителя к опоре при монтаже. Токопровод состоит из двух неподвижных контактов 4 и подвижного контактного ножа 5. На основании установлены три токопровода с основным (общим) валом. Поджатие пластин контактного ножа осуществляется пружинами 3. Для жесткости пластинам ножа придана коробчатая форма.

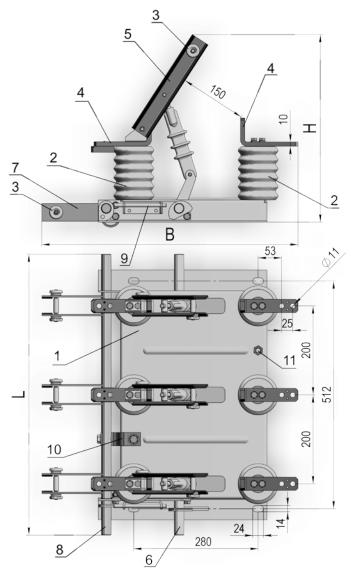


Рисунок 1. Разъединитель типа РВЗ-10

1- изолятор опорный; 3- пружина поджатия; 4- неподвижный контакт; 5- подвижный контактный нож; 6- вал разъединителя; 7- заземляющие ножи; 8- вал заземляющих ножей; 9- блокировка; 10- гибкая связь; 11- площадка заземления.

- 3.2. При вращении вала разъединителя 6 с помощью привода происходит одновременное включение или отключение трех контактных ножей.
- 3.3. Разъединители РВФ(3) (рисунок 2) отличаются от разъединителей РВ(3) тем, что имеют проходные изоляторы (2) и в зависимости от исполнения имеют три фигуры:
 - проходные изоляторы со стороны шарнирных контактов;
 - проходные изоляторы со стороны разъемных контактов;
 - проходные изоляторы с обеих сторон.

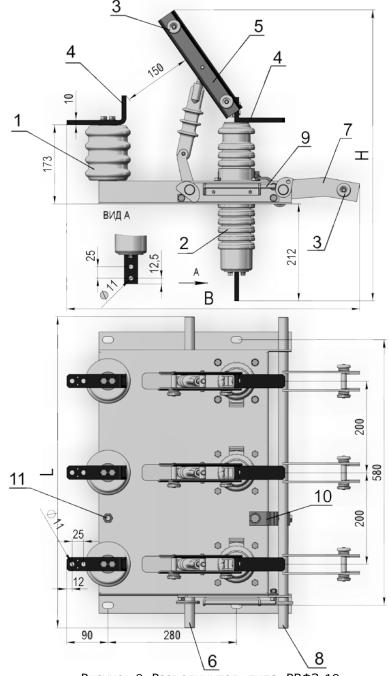


Рисунок 2. Разъединитель типа РВФ3-10

1- изолятор опорный; 2- изолятор проходной; 3- пружина поджатия; 4- неподвижный контакт; 5- подвижный контактный нож; 6- вал разъединителя; 7- заземляющие ножи; 8- вал заземляющих ножей; 9- блокировка; 10- гибкая связь; 11- площадка заземления.

Разъединители РВЗ, РВФЗ, заземлители ЗР с приводом ПР

- 3.4. Разъединители РВФ(3) предназначены для использования в электроустановках, где необходимо осуществить подвод электроэнергии с одной стороны стены, а отвод с другой стороны без дополнительных проходных изоляторов.
- 3.5. Разъединители РВ3(РВФ3) отличаются от РВ(РВФ) тем, что имеют заземляющие ножи 7. В зависимости от исполнения разъединители имеют три варианта:
 - заземляющие ножи со стороны шарнирных контактов;
 - заземляющие ножи со стороны разъемных контактов;
 - заземляющие ножи с обеих сторон.
- 3.6. Заземляющие ножи смонтированы на дополнительном валу 8, который укреплен в общей раме (основании) разъединителя.
- 3.7. В конструкции разъединителей с заземляющими ножами предусмотрена механическая блокировка 9 между валом контактных ножен и валом заземляющих ножей, которая исключает одновременное включение контактных и заземляющих ножей.
- 3.8. Разъединители с заземляющими ножами РВЗ предназначены для заземления основного токоведущего контура со стороны снятого напряжения, при его отключении и для безопасного производства работ на отключенном участке электрической цепи.
- 3.9. Разъединители РВФЗ по конструкции/принципу действия и назначению аналогичны разъединителям РВФ и РВЗ.
- 3.10. Заземлитель типа 3P-10 (рисунок 3) предназначен для заземления токоведущего контура при условии отсутствия напряжения и обеспечивает безопасное производство работ на отключенном участке электрической цепи.
- 3.11. Заземлитель типа ЗР-10П (рисунок 4) имеет дополнительно пружину ускоренного включения и предназначен для применения в ячейках КРУ, где требуется включение заземлителя без задержки на момент замыкания контактов.
- 3.12. Управление контактными и заземляющими ножами производится отдельными приводами ПР-10 (рисунок 5). В конечных положениях рукоятка привода 1 удерживается фиксатором 2. Кроме того, рукоятка привода может запираться с помощью электромагнитного блокировочного или навесного замка. Способ крепления замков (с помощью дополнительных деталей) должен быть выбран при монтаже разъединителя (заземлителя) с приводом в зависимости от варианта соединения в каждом конкретном случае.

3.13. Для сигнальных и блокировочных цепей с разъединителями (заземлителями) могут использоваться блок-контакты (КСА или другого типа).

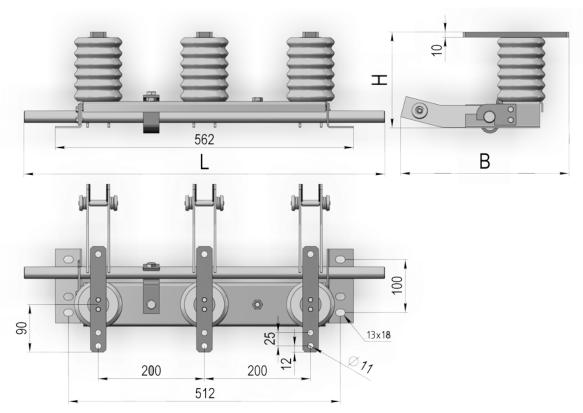


Рисунок 3. Заземлитель типа 3Р-10.

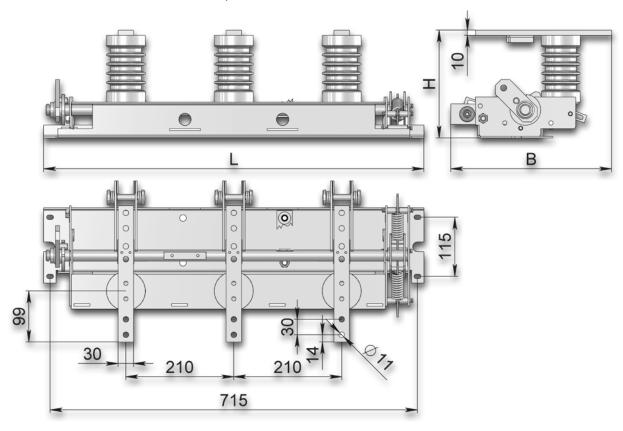


Рисунок 4. Заземлитель типа 3Р-10П.

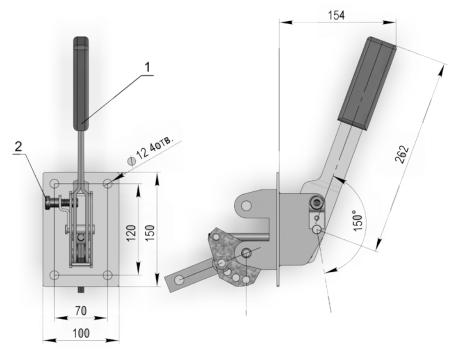


Рисунок 5. Привод ПР-10. 1- ручка; 2- фиксатор

4. МАРКИРОВАНИЕ

- 4.1. Каждый разъединитель, заземлитель и привод имеет табличку, содержащую следующие данные:
 - товарный знак предприятия-изготовителя;
 - наименование изделия;
 - тип изделия;
 - номинальное напряжение (для разъединителей и заземлителей);
 - номинальный ток (для разъединителей);
 - масса;
 - ток термической стойкости;
 - обозначение ТУ;
 - знак соответствия при обязательной сертификации по ГОСТ Р 50460;
 - месяц и год выпуска.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 5.1. Изготовитель гарантирует соответствие изделий требованиям ГОСТ Р 52726 при соблюдении условий транспортирования, хранения, монтажа и эксплуатации.
- 5.2. Гарантийный срок хранения изделий 1 год.
- 5.3. Гарантийный срок эксплуатации 5 лет со дня ввода в эксплуатацию при условии невыработки механического ресурса, если не превышен гарантийный срок хранения.

Руководство по эксплуатации

6.УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

- 6.1. Разъединители, заземлители и приводы должны соответствовать ГОСТ Р 52726, а также следующим правилам:
 - правилам устройств электроустановок (ПУЭ);
 - правилам технической эксплуатации электроустановок потребителей и правилам техники безопасности при эксплуатации электроустановок потребителем;
 - правилам технической эксплуатации электрических станций и сетей;
 - правилам техники безопасности при эксплуатации электроустановок электрических станций и подстанций.

Заземление должно выполняться в соответствии с действующими ПУЭ.

- 6.2. Обслуживающий персонал должен быть ознакомлен с настоящим руководством, строго выполнять его требования, а также требования местных эксплуатационных инструкций.
- 6.3. Основание разъединителя (заземлителя) и передний подшипник привода должны быть заземлены.
- 6.4. Отключение разъединителя приводом должно производиться только после снятия (отключения) нагрузочных токов в линии.
- 6.5. После отключения разъединителя необходимо убедиться (визуально) в наличии видимого разрыва между контактными ножами и неподвижными контактами.
- 6.6. Любые работы на разъединителе (заземлителе) могут производиться только при отсутствии напряжения на нем и на подводящих шинах.

7. ПОДГОТОВКА К РАБОТЕ

- 7.1. Перед монтажом разъединителя (заземлителя), привода и дистанционной передачи необходимо, не разбирая изделий, удалить загрязненную консервационную смазку из всех доступных мест, проверить исправность всех деталей и узлов и смазать вновь. Изоляторы очистить чистым бензином и ветошью.
- 7.2. Запрещается при монтаже производить переделку разъединителей (заземлителей), приводов и их деталей.

Разъединители РВЗ, РВФЗ, заземлители ЗР с приводом ПР

- 7.3. Неприсоединенный конец гибкой связи заземляющего вала подсоединить при монтаже разъединителя.
- 7.4. Разъединитель и привод укрепить на опоре с помощью болтов и монтажных отверстий и соединить между собой при помощи дистанционной передачи.
- 7.5. При монтаже дистанционную передачу подбирать так, чтобы включенному положению ножей разъединителя (заземлителя) соответствовало крайнее положение поднятой вверх рукоятки привода, а крайнему положению отключенных ножей крайнее положение опущенной вниз рукоятки привода. Изоляционное расстояние между неподвижным контактом и контактным ножом разъединителя не менее 150 мм необходимо отрегулировать при установке разъединителя с приводом. При этом упоры в крайних положениях ВКЛЮЧЕНО и ОТКЛЮЧЕНО должны находиться в приводе, а не в разъединителе. Дистанционную передачу разъединителя (заземлителя) установить с соблюдением требуемых минимальных электрических расстояний.
- 7.6. Рычаги основного и заземляющего валов установить в соответствии с требованиями данной инструкции при помощи сварки.
- 7.7. Контактные выводы разъединителя не должны испытывать механических напряжений от подводящих шин. Подводящие шины в непосредственной близости к разъединителю (заземлителю) должны лежать в одной плоскости с контактными выводами.
- 7.8. Поверхности соприкосновения подводящих шин и контактных выводов разъединителя зачистить для получения достаточно плотного и устойчивого контактного соединения и перед присоединением смазать.
- 7.9. Болты, стягивающие контактное соединение шин с выводами разъединителя (заземлителя), не должны самоотвинчиваться.
- 7.10. Конец шины заземления, а также площадку около болта заземления на раме разъединителя и подшипнике привода зачистить до металлического блеска и смазать.
- 7.11. До пуска разъединителя (заземлителя) в эксплуатацию убедиться путем его включения и отключения (15-20 раз) приводом в правильности его совместной регулировки с приводом, в надежном попадании контактных ножей на контакты, в надежности крепления контактов и всех других соединений и в исправности работы привода. Включение и отключение разъединителя контроли-

ровать по положению рукоятки привода, визуально — по контактным ножам разъединителя.

- 7.12. Возможные варианты соединения разъединителей РВЗ и РВФЗ с приводом показаны на рис. 5 и рис. 6 соответственно.
- 7.13. Присоединительные размеры выводных контактов разъединителей и заземлителя приведены на рисунках 1...4.

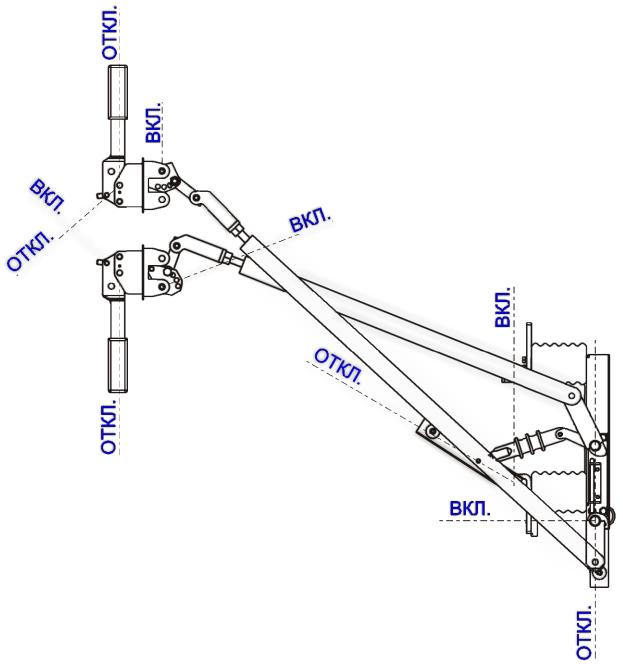


Рисунок 6. Вариант соединения разъединителя РВЗ с приводом.

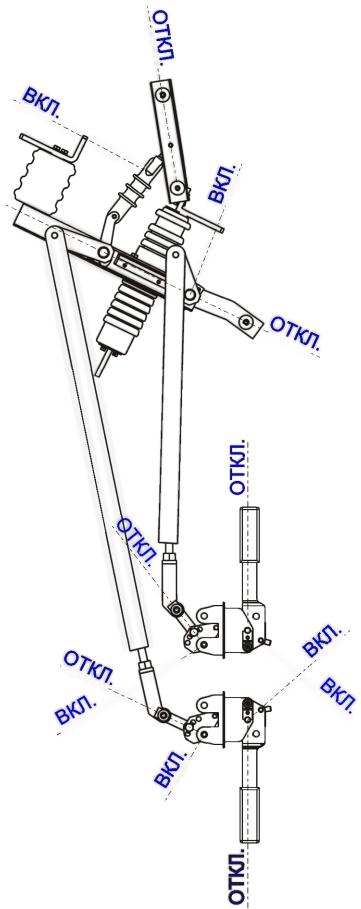


Рисунок 7. Вариант соединения разъединителя РВФЗ с приводом.

8. ПРОВЕРКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ

Перед включением разъединителя в сеть проведите проверки, перечисленные ниже.

Что проверяется, при помощи какого инструмента, приборов и оборудования.	Технические требования
Методика проверки 1. Проверить чистоту поверхности изоляторов и тяг, убедиться в отсутствии трещин, сколов. Проверку проводить визуально. Измерение сколов производить универсальным мерительным инструментом	Отсутствие на изоляторах и тягах трещин, загрязнений. Сколы допускаются общей площадью не более 50 мм2, глубиной до 2 мм. Сосредоточенные сколы не допускаются. Резко выраженные дефекты на поверхности изоляторов и тяг должны быть покрыты атмосферостойким лаком (краской) под цвет глазури
2. Проверить наличие смазки на шарнирных и трущихся частях разъединителя и привода, на поверхностях соприкосновения подводящих шин и контактных выводов. Проверку проводить визуально	Шарнирные и трущиеся части, поверхности соприкосновения шин и контактных выводов разъединителя и привода должны быть смазаны солидолом Ж ГОСТ 1033—79 или другой равнозначной смазкой
3. Проверить контактные поверхности главных и заземляющих ножей под щуп. Проверку контактных поверхностей проводить щупом шириной 10 мм, толщиной 0,1 мм для главных и для заземляющих ножей. Щуп не должен проходить более 1 мм вдоль контактной линии или внутрь поверхностного контакта. При необходимости произвести регулировку	Линейный контакт должен иметь не менее двух площадок касания. Поверхностный контакт должен иметь не менее трех площадок касания, не лежащих на одной прямой линии
4. Проверить затяжку резьбовых соединений разъединителя, привода и дистанционной передачи соответствующим стандартным инструментом	_
5. Проверить вырывающее усилие ножей разъединителя динамометром путем пятикратного замера. Точка приложения силы — крайняя ось ножа со стороны разъемного контакта при отсоединенной фарфоровой тяге. Для заземляющих ножей вырывающее усилие проверить с помощью вставки, равной ширине контакта. Пиковое значение усилия в момент трогания механизмов, входа ножа в контакт и выхода из контакта, не учитывается.	Вырывающее усилие, контактных ножей разъединителей 1030 кгс, разъединителей на 1000А вырывающее усилие 2430 кгс. Вырывающее усилие заземляющих ножей разъединителей на 630А — 512 кгс, на 1000А — 615 кгс
6. Произвести пять контрольных включений и отключений разъединителя с целью проверки правильности работы всех механизмов разъединителя и привода.	

9. ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Наименование неисправности и внешнее ее проявление	Вероятная причина	Метод устранения
1. Сколы, трещины, излом изоляторов и тяг	Повреждения при переключениях или короткое замыкание	Заменить изоляторы и тяги
2. Самоотвинчивание болтов, гаек	То же	Подтянуть болты, гайки
3. Несоответствующее норме вырывающее усилие главных и заземляющих ножей разъединителя	Попадание пыли, грязи в контакты, перекосы или приваривание кон тактов	Заменить смазку в контактных частях, зачистить контактные поверхности и отрегулировать под щуп
4. Подгорание контактных поверхностей контактов и ножей	Короткое замыкание из-за плохого контакта	Зачистить, отрегулировать или заменить контакты и ножи

Разъединитель и привод периодически (два-три раза в год), а также после каждого короткого замыкания должны быть подвергнуты осмотру. При необходимости произвести ремонт с заменой изношенных или поврежденных деталей или узлов.

10. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 10.1. Транспортирование изделия производят любым видом транспорта. При транспортировании автомобильным транспортом, в вагонах или контейнерах допускается по согласованию между потребителем и изготовителем перевозка изделий без индивидуальной упаковки. При этом должны быть приняты меры против возможных повреждений.
- 10.2. Допустимый срок сохраняемости изделий до переконсервации 1 год.
- 10.3. Вместе с разъединителями поставляются приводы и детали дистанционной передачи в соответствии с заказом. Полностью собранные разъединители, приводы и детали дистанционной передачи отправляются заказчику законсервированными, в заводской упаковке, предохраняющей от повреждений во время транспортирования.

- 10.4. Разъединители, приводы и комплектующие детали могут храниться в упаковке и без упаковки в закрытом неотапливаемом помещении.
- 10.5. При хранении разъединителей, приводов, комплектующих деталей и узлов необходимо производить их осмотр не реже одного раза в шесть месяцев и при необходимости обновлять консервационную смазку
- 10.6. При получении разъединителей и приводов необходимо проверить, нет ли на них повреждений, полученных при транспортировании.

www.tecomplex.ru 666 "HT@ Texaheprokomfieke"

PB(Φ)3-10